003:点到超平面距离公式的推导过程

【例2】已知 S S S为维n欧式空间中的n-1维超平面
S   :   w ⋅ x + b = 0 S \ : \ \bold{w}·x + b =0 S : wx+b=0
其中 w \bold{w} w x x x 均为n维向量。

n维空间中的点 x 0 = ( x 0 ( 1 ) , x 0 ( 2 ) , ⋯   , x 0 ( n ) ) x_0 = (x_0^{(1)},x_0^{(2)},\cdots,x_0^{(n)}) x0=(x0(1),x0(2),,x0(n))

求证:点 P P P 到超平面 S S S 的距离 d = 1 ∣ ∣ w ∣ ∣ 2 ∣ w ⋅ x 0 + b ∣ d = \frac{1}{||w||_2} |\bold{w}·x_0+b| d=w21wx0+b ,其中 ∣ ∣ w ∣ ∣ 2 ||w||_2 w2 w w w 的2-范数。

证明

由超平面 S S S 的定义式可知 w w w 为超平面 S S S 的法向量, b b b 为超平面 S S S 的截距。

设点 x 0 x_0 x0 在超平面 S S S 上的投影为 x 1 = ( x 1 ( 1 ) , x 1 ( 2 ) , ⋯   , x 1 ( n ) ) x_1 = (x_1^{(1)},x_1^{(2)},\cdots,x_1^{(n)}) x1=(x1(1),x1(2),,x1(n)) ,则有

w ⋅ x 1 + b = 0 (1) \bold{w} · x_1 + b = 0 \tag{1} wx1+b=0(1)

P P P 到超平面 S S S 的距离 d d d 即为向量 x 0 x 1 ⃗ \vec{x_0 x_1} x0x1 的长度。

因为 x 0 x 1 ⃗ \vec{x_0 x_1} x0x1 与超平面 S S S 的法向量 w w w 平行,所以 x 0 x 1 ⃗ \vec{x_0 x_1} x0x1 与法向量夹角的余弦值 c o s θ = 0 cos \theta = 0 cosθ=0 ,故有
w ⋅ x 0 x 1 ⃗ = ∣ w ∣   ∣ x 0 x 1 ⃗ ∣   c o s θ = ∣ w ∣   ∣ x 0 x 1 ⃗ ∣ = [ ( w ( 1 ) ) 2 + ( w ( 2 ) ) 2 + ⋯ + ( w ( n ) ) 2 ] 1 2   d = ∣ ∣ w ∣ ∣ 2 d (2) \begin{aligned} \bold{w} · \vec{x_0 x_1} & = |\bold{w}| \ |\vec{x_0 x_1}| \ cos \theta \\ & = |\bold{w}| \ |\vec{x_0 x_1}| \\ & = [(w^{(1)})^2 + (w^{(2)})^2 + \cdots + (w^{(n)})^2]^\frac{1}{2} \ d \\ & = ||w||_2 d \end{aligned} \tag{2} wx0x1 =w x0x1  cosθ=w x0x1 =[(w(1))2+(w(2))2++(w(n))2]21 d=w2d(2)

又有(应用向量点积的分配律)
w ⋅ x 0 x 1 ⃗ = w ( 1 ) ( x 1 ( 1 ) − x 0 ( 1 ) ) + w ( 2 ) ( x 1 ( 2 ) − x 0 ( 2 ) ) + ⋯ + w ( n ) ( x 1 ( n ) − x 0 ( n ) ) = ( w ( 1 ) x 1 ( 1 ) + w ( 2 ) x 1 ( 2 ) + ⋯ + w ( n ) x 1 ( n ) ) − ( w ( 1 ) x 0 ( 1 ) + w ( 2 ) x 0 ( 2 ) + ⋯ + w ( n ) x 0 ( n ) ) = w ⋅ x 1 − w ⋅ x 0 (3) \begin{aligned} \bold{w} · \vec{x_0 x_1} & = w^{(1)} (x_1^{(1)} - x_0^{(1)}) + w^{(2)} (x_1^{(2)} - x_0^{(2)}) + \cdots + w^{(n)} (x_1^{(n)} - x_0^{(n)}) \\ & = (w^{(1)} x_1^{(1)} + w^{(2)} x_1^{(2)} + \cdots + w^{(n)} x_1^{(n)}) - (w^{(1)} x_0^{(1)} + w^{(2)} x_0^{(2)} + \cdots + w^{(n)} x_0^{(n)}) \\ & = \bold{w}·x_1 - \bold{w}·x_0 \end{aligned} \tag{3} wx0x1 =w(1)(x1(1)x0(1))+w(2)(x1(2)x0(2))++w(n)(x1(n)x0(n))=(w(1)x1(1)+w(2)x1(2)++w(n)x1(n))(w(1)x0(1)+w(2)x0(2)++w(n)x0(n))=wx1wx0(3)

由式(1),有 w ⋅ x 1 = − b w·x_1 = -b wx1=b,故式(3)可以写成
w ⋅ x 0 x 1 ⃗ = w ⋅ x 1 − w ⋅ x 0 = − b − w ⋅ x 0 (4) \begin{aligned} \bold{w} · \vec{x_0 x_1} & = \bold{w}·x_1 - \bold{w}·x_0 \\ & = -b - \bold{w}·x_0 \end{aligned} \tag{4} wx0x1 =wx1wx0=bwx0(4)
由式(2)和式(4),得
∣ ∣ w ∣ ∣ 2 d = ∣ − b − w ⋅ x 0 ∣ d = 1 ∣ ∣ w ∣ ∣ 2 ∣ w ⋅ x 0 + b ∣ \begin{aligned} ||w||_2 d = |-b - \bold{w}·x_0| \\ d = \frac{1}{||w||_2} |\bold{w}·x_0+b| \end{aligned} w2d=bwx0d=w21wx0+b

得证。

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页