题目:原题链接(困难)
标签:分治算法、图、深度优先搜索、树、递归
解法 | 时间复杂度 | 空间复杂度 | 执行用时 |
---|---|---|---|
Ans 1 (Python) | O ( N 2 ) O(N^2) O(N2) | O ( N ) O(N) O(N) | 2456ms (31.82%) |
Ans 2 (Python) | |||
Ans 3 (Python) |
解法一:
class Solution:
def __init__(self):
self.graph = collections.defaultdict(set)
def checkWays(self, pairs: List[List[int]]) -> int:
# 构造图结构和节点列表
nodes = set()
for n1, n2 in pairs:
nodes.add(n1)
nodes.add(n2)
self.graph[n1].add(n2)
self.graph[n2].add(n1)
# 深度优先搜索:不断移除根节点并递归它的所有子树
return self.dfs(nodes)
def dfs(self, nodes):
# 寻找根节点
roots = []
for n1 in nodes:
num = 0
for n2 in self.graph[n1]:
if n2 in nodes:
num += 1
if num == len(nodes) - 1:
roots.append(n1)
# 如果没有根节点,则没有结果
if len(roots) == 0:
return 0
# 如果已经有多个根则标记(用于返回2)
maybe = 1
if len(roots) > 1:
maybe = 2
# 移除所有可能的根节点(所有可能的根节点可以排成形如测试用例2的一竖列的情形)
for n in roots:
nodes.remove(n)
# 遍历所有的连通分支
while nodes:
queue = collections.deque([nodes.pop()])
sub_nodes = set()
while queue:
n1 = queue.popleft()
sub_nodes.add(n1)
for n2 in self.graph[n1]:
if n2 in nodes:
nodes.remove(n2)
queue.append(n2)
# 递归处理当前连通分支子树
res = self.dfs(sub_nodes)
if res == 0:
return 0
if res == 2:
maybe = 2
return maybe