题目:原题链接(简单)
解法 | 时间复杂度 | 空间复杂度 | 执行用时 |
---|---|---|---|
Ans 1 (Python) | O ( N ) O(N) O(N) | O ( 1 ) O(1) O(1) | 超出时间限制 |
Ans 2 (Python) | O ( N ) O(N) O(N) | O ( 1 ) O(1) O(1) | 1020ms (91.29%) |
Ans 3 (Python) | O ( N ) O(N) O(N) | O ( 1 ) O(1) O(1) | 1096ms (62.83%) |
LeetCode的Python执行用时随缘,只要时间复杂度没有明显差异,执行用时一般都在同一个量级,仅作参考意义。
解法一(暴力解法):
def findMaxAverage(self, nums: List[int], k: int) -> float:
maximum = float("-inf")
for i in range(len(nums) - k + 1):
n = sum(nums[i:i + k])
maximum = max(maximum, n)
return maximum / k
解法二(累计求和):
def findMaxAverage(self, nums: List[int], k: int) -> float:
maximum = [sum(nums[0:k])] * (len(nums) - k + 1)
for i in range(0, len(nums) - k):
maximum[i] = maximum[i - 1] - nums[i] + nums[i + k]
return max(maximum) / k
解法三(滑动最大值窗口):
def findMaxAverage(self, nums: List[int], k: int) -> float:
maximum = now = sum(nums[0:k])
for i in range(0, len(nums) - k):
now = now - nums[i] + nums[i + k]
maximum = max(maximum, now)
return maximum / k