统计学的Python实现-006:方差

作者:长行

时间:2019.03.08

方差:方差是衡量一组数据离散程度的统计量。统计学中的方差(样本方差)是每个样本值与全体样本值的均值之差的平方的均值。概率论中的方差(总体方差)是随机变量及其数学期望之间的偏离程度。

统计学解释

总体方差的计算公式如下:

σ 2 = ∑ ( X − μ ) 2 N \sigma^2 = \frac{\sum(X-\mu)^2}{N} σ2=N(Xμ)2

其中 σ 2 \sigma^2 σ2为总体方差, X X X为变量值, μ \mu μ为总体均值, N N N为总量

样本方差的计算公式如下:
S 2 = ∑ ( X − x ‾ ) 2 n − 1 S^2 = \frac{\sum(X-\overline{x})^2}{n-1} S2=n1(Xx)2
其中 S 2 S^2 S2为样本方差, X X X为样本值, x ‾ \overline{x} x为样本均值, n n n为样本量

实现代码

计算总体方差

import numpy as numpy
data_test=[1,2,3]  # 定义测试数组
def variance_population(data):
    mean=numpy.mean(data) #利用numpy的方法计算均值
    deviation=0
    for i in data:
       deviation+=(i-mean)**2
    return deviation/len(data)
print(variance_population(data_test))

结果

0.6666666666666666

计算样本方差

import numpy as numpy
def variance_sample(data):
    mean=numpy.mean(data) #利用numpy的方法计算均值
    deviation=0
    for i in data:
        deviation+=(i-mean)**2
    return deviation/(len(data)-1)
print(variance_sample(data_test))

结果

1.0

调用numpy的var方法(结果为总体方差)

import numpy as numpy
print(numpy.var(data_test))

结果

0.6666666666666666

代码解释

num**2计算num的2次方

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 游动-白 设计师:上身试试 返回首页