004:感知机(2):感知机学习策略
之前已经得到了感知机模型f(x)=sign(w⋅x+b)f(x)=sign(w·x+b)f(x)=sign(w⋅x+b)及其假设空间F={f∣Y=fw,b(X),w∈Rn,b∈R}\mathcal{F} = \{f|Y=f_{w,b}(X),w \in R^n,b \in R\}F={f∣Y=fw,b(X),w∈Rn,b∈R},完成了统计学习方法的第一个要素:模型。下面考虑按照要按照什么样的准则从假设空间中选取最优模型,即统计学习方法的第二个要素:策略。即当训练数据集线性可分时,如何找出可以将正实例点和